Computation of the normal forms for general M-DOF systems using multiple time scales. Part I: autonomous systems
نویسندگان
چکیده
This paper is concerned with the symbolic computation of the normal forms of general multiple-degreeof-freedom oscillating systems. A perturbation technique based on the method of multiple time scales, without the application of center manifold theory, is generalized to develop efficient algorithms for systematically computing normal forms up to any high order. The equivalence between the perturbation technique and Poincaré normal form theory is proved, and general solution forms are established for solving ordered perturbation equations. A number of cases are considered, including the non-resonance, general resonance, resonant case containing 1:1 primary resonance, and combination of resonance with non-resonance. ‘‘Automatic’’ Maple programs have been developed which can be executed by a user without knowing computer algebra and Maple. Examples are presented to show the efficiency of the perturbation technique and the convenience of symbolic computation. This paper is focused on autonomous systems, and non-autonomous systems are considered in a companion paper. 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Computation of the normal forms for general M-DOF systems using multiple time scales. Part II: non-autonomous systems
A perturbation technique has been developed in Part I to consider the computation of the normal forms for general multiple-degree-of-freedom autonomous systems. In this paper, the perturbation approach is extended to study general non-autonomous systems and is focused on systems with external forcing. With the aid of multiple time scales, efficient recursive algorithms are developed for systema...
متن کاملNORMAL FORM SOLUTION OF REDUCED ORDER OSCILLATING SYSTEMS
This paper describes a preliminary investigation into the use of normal form theory for modelling large non-linear dynamical systems. Limit cycle oscillations are determined for simple two-degree-of-freedom double pendulum systems. The double pendulum system is reduced into its centre manifold before computing normal forms. Normal forms are obtained using a period averaging method which is appl...
متن کاملA Novel Approach to Trace Time-Domain Trajectories of Power Systems in Multiple Time Scales Based Flatness
This paper works on the concept of flatness and its practical application for the design of an optimal transient controller in a synchronous machine. The feedback linearization scheme of interest requires the generation of a flat output from which the feedback control law can easily be designed. Thus the computation of the flat output for reduced order model of the synchronous machine with simp...
متن کاملNormal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملContour Crafting Process Plan Optimization Part I: Single-Nozzle Case
Contour Crafting is an emerging technology that uses robotics to construct free form building structures by repeatedly laying down layers of material such as concrete. The Contour Crafting technology scales up automated additive fabrication from building small industrial parts to constructing buildings. Tool path planning and optimization for Contour Crafting benefit the technology by increasin...
متن کامل